Public Key Protocols over the Ring E
نویسندگان
چکیده
In this paper we use the nonrepresentable ring E (m) p to introduce public key cryptosystems in noncommutative settings and based on the Semigroup Action Problem and the Decomposition Problem respectively.
منابع مشابه
Diffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملPublic key protocols over the ring $E_{p}^{(m)}$
In this paper we use the nonrepresentable ring E (m) p to introduce public key cryptosystems in noncommutative settings and based on the Semigroup Action Problem and the Decomposition Problem respectively.
متن کاملKey Agreement Protocols Based on Multivariate Algebraic Equations on Quaternion Ring
In this paper we propose new key agreement protocols based on multivariate algebraic equations. We choose the multivariate function F(X) of high degree on non-commutative quaternion ring H over finite field Fq. Common keys are generated by using the public-key F(X). Our system is immune from the Gröbner bases attacks because obtaining parameters of F(X) to be secret keys arrives at solving the ...
متن کاملPublic Key Cryptography Based on Simple Modules over Simple Rings
The Diffie Hellman key exchange and the ElGamal oneway trapdoor function are the basic ingredients of public key cryptography. Both these protocols are based on the hardness of the discrete logarithm problem in a finite ring. In this paper we show how the action of a ring on a module gives rise to a generalized Diffie-Hellman and ElGamal protocol. This leads naturally to a cryptographic protoco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016